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Kinetic simulations of two-dimensional finite amplitude Electron Plasma Waves (EPWs) are per-
formed in a one-wavelength long system. A systematic study of the most unstable linear sideband
mode, in particular its growth rate γ and wavenumber ky, is carried out by scanning the amplitude
and wavenumber of the initial wave. Simulation results are compared with numerical and analytical
solutions to a two-dimensional nonlinear Schroedinger model [H. A. Rose and L. Yin, Phys. Plasmas
15, 042311 (2008)] and to the reduced model by Kruer [W. L. Kruer et al., Phys. Rev. Lett. 23,
838 (1969)] generalized to two dimensions.

PACS numbers:

I. INTRODUCTION

A number of plasma instabilities, such as electron beam-plasma interactions and stimulated Raman scattering, may
produce in the nonlinear state large amplitude electron plasma waves. In weakly collisional plasmas, such waves may
evolve to a quasi-steady Bernstein-Greene-Kruskal (BGK)-like state.[1] In one dimension (1D), such waves are unstable
to longitudinal sideband instabilities.[2] In two dimensions (2D), these waves undergo a transverse modulational
instability akin to filamentation with a growth rate dependent on the number of trapped electrons.[3, 4] Here, we
present 2D +2V (two dimensions in configuration and velocity space) Vlasov simulations of freely propagating large-
amplitude EPWs for a range of wave amplitudes φL and wavenumbers kLλDe and compare the results to a published
theoretical model[5, 6] and to a new model, a herein derived generalization of the Kruer, Dawson and Sudan (GKDS)
model [2] to multiple dimensions. This GKDS model considers also the growth of sidebands composed of Fourier

modes with wavevectors at oblique angles to the wavevector ~kL of the large amplitude EPW, in particular transverse

sidebands with Fourier modes having wavevectors ~kS = n~kL + δ~kS , δ~kS⊥~kL, leading to filamentation instabilities.
Landau damping of the obliquely propagating EPWs sets an amplitude-dependent limit on the magnitude of the
largest unstable transverse wavenumber.

The filamentation of EPWs caused by a spatially varying nonlinear frequency produced by the presence of trapped
and nearly trapped resonant particles was predicted based on a nonlinear Schroedinger equation model by Rose and
Yin.[5, 7] Here, we analyze a similar but simpler model based on an extension to 2D of a model proposed by Dewar,
[8] which we refer to as the Dewar-Rose-Yin (DRY) model. In its simplest form, this model predicts a growth rate

that scales with φ
1/2
L whereas the Vlasov simulations presented here show a somewhat stronger scaling with φL but

also a dependence on kLλDe. Given the remarkable success of the KDS dispersion in modeling the growth rate of
the longitudinal TPI, [9] we extended that theory to 2D. A detailed derivation is given in Appendix A. In the limit
that the bulk plasma response is treated in the fluid limit (consistent with the longitudinal TPI model), the solution
of the dispersion relation involves finding the roots to an 8th order polynominal with real coefficients. In this model,
unstable roots are found at much larger transverse wavenumbers and with much larger growth rates than found in our
Vlasov simulations. The DRY model is presented in Section III A and the generalized KDS model (GKDS) in Section
III B. The growth rates of the GKDS model are brought into better agreement with the simulations by considering
the effect of Landau damping. For waves traveling in the same direction as the initial wave and with phase velocities
falling within the trapped region, Landau damping is strongly reduced. However, waves that propagate at finite angles

to ~kL experience a stronger gradient in the velocity distribution, that is, the damping is anisotropic and dependent
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FIG. 1: Evolution of a plane wave from (a) its initial uniform transverse profile to (b) a filamented profile. (c) the time evolution
of the total field energy (black) normalized to the maximum value and the maximum value of Ex (red). The electric field is
normalized to Te/(eλDe).

on φL. A model for that anisotropic damping is developed in Sec. III C and applied to the DRY and GKDS growth
rates in Sec. III D where reasonable agreement of the modified theory with the simulations is achieved. We conclude
in Sec. IV.

II. SIMULATION RESULTS

In this section, we present simulation results obtained with LOKI [11] which solves the full 2D+2V nonlinear
Vlasov-Poisson system, using an Eulerian based approach. The time and length scales are normalized to the inverse
of the plasma frequency, ωpe =

√
Nee2/meε0, and the electron Debye length, λDe = vth,e/ωpe, where Ne is the

electron plasma density, vth,e =
√
Te/me is the electron thermal velocity, Te is the electron temperature, −e is

the electron charge, and me is the electron mass. These spatially two-dimensional simulations involve, in a first
phase, generation of a large amplitude traveling plane wave (LAW), driven by the external potential φext along the
x direction with y taken as the transverse direction. In the second phase, the undriven wave breaks-up through the
longitudinal trapped particle instability (TPI) and transverse filamentation instability. The longitudinal sideband
instability has been studied thoroughly with 1D Vlasov simulations and the growth rates were shown to agree very
well with the 1D KDS model.[9] In that case and here, the external field drives a wave to large amplitude over a
short time, typically ωpet = 100 after which an apparent quasi-stationary state is established. In the early part of
the second stage after the external field is turned off, there are noticeable bounce oscillations in wave amplitude as
the trapped electrons and the field exchange energy. Later, during the quiescent period, the mode frequency and
trapped particle distribution function are measured and agree very well with an ’adiabatic’ distribution[6] and its
corresponding frequency shift as discussed in detail in Ref. [12]. The longitudinal instability involves growth of

sideband EPWs with |δ~kS | = |~kS −~kL| < |~kL| which requires a system many wavelengths long along the propagation
direction. That study in Ref. ([9]) imposed periodic boundary conditions along the x direction.

Here, we study transverse perturbations with perpendicular wavevector ~δk⊥ ~kL and |δk| = |ky| � kL. The system
is periodic in both spatial dimensions. To restrict the study to transverse instabilities only, the simulation is only one
EPW wavelength long in the propagation direction. Typically, the simulation width is 192πλDe; the length is 6π for
kLλDe = 1/3 and 4.71π for kLλDe = 0.425. For kLλDe = 1/3, an example is given in Fig. 1. During the apparently
quiescent period from t = 600 ω−1

pe to t = 5000 ω−1
pe , transverse perturbations grow exponentially until the peaks

in the field amplitude localized in the transverse direction become apparent as shown in Fig. 1b. At this time, the
electric field amplitude attains local maxima but the primary LAW is destroyed and much of the EPW field energy
is converted to kinetic energy of electrons as shown in Fig. 1c.

In Fig. 2a, the time dependence of the 2D spatial Fourier transform of the field |Ex(kx = kL, ky)| shows exponential

growth of ’sidebands’ with ( ~kS = [kL, ky] ) to the primary wave ( ~kL = [kL, 0] ). At the time the sideband amplitudes
near the amplitude of the primary wave, a sudden loss in EPW field energy occurs with a sudden and equal gain in
electron kinetic energy. The exponential growth of the fastest growing modes is shown in Fig. 2b and Fig. 2c on log
and linear scales respectively.
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FIG. 2: ( a) The magnitude of the Fourier transform of the field |Ex(kL, ky)|: shown is the log of |Ex| versus ky and time. (b )
The exponential growth of transverse Fourier modes over 12 orders of magnitude. (c )The same as ( b ) but on a linear scale.
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FIG. 3: Simulations: (a) The growth rate of the transverse modulations as a function of kyλDe and the wave amplitude eφL/Te

where kLλDe = 1/3. (b) The maximum growth rate as a function of eφL/Te for kLλDe = 1/3 (black) and kLλDe = 0.425
(red). (c) The wavenumber ky,max at which the growth rate is maximum as a function of eφL/Te for kLλDe = 1/3 (black) and
kLλDe = 0.425 (red).

Simulations have been done for an extensive scan of wave amplitudes from eφL/Te = 0.01 to eφL/Te = 1 for
different values of kLλDe, and growth rates as a function of transverse wavenumber ky extracted. The results are
shown in Fig. 3. In Fig. 3a, the growth rate ’spectrum’ is shown for the case where kLλDe = 1/3 as a function of the
transverse wavenumber, kyλDe, and wave amplitude φL in the ’quiescent’ period of evolution. In this plot, the white
line traces out for each amplitude φL the wavenumber ky,max of the mode with the fastest growth rate, γmax. In Fig.
3b,c, the maximum growth rate and the wavenumber ky,max of the mode with the fastest growth rate are plotted as a
function of the wave amplitude eφL/Te for both kLλDe = 1/3 and kLλDe = 0.425. Note for a given wave amplitude,
the growth rate of the filamentation instability is faster for the higher wavenumber as one might expect given that the
phase velocity is lower ( vφ = 3.1vth,e versus vφ = 3.6vth,e ) and more electrons are trapped. Frequency analysis of the
growing modes showed that they are filamentation-like with the same real frequency as the LAW. We note here for

comparison to theoretical models that the maximum growth rate, γmax, scales with wave amplitude as γmax ∝ φ
2/3
L

for kLλDe = 1/3 but γmax ∝∼ φ
1/2
L for kLλDe = 0.425 for eφ/Te < 0.6 above which the scaling is faster. However,

the wavenumber of the fastest growing mode, ky,max ∝ φ1/2
L , scales with the square root of the wave amplitude.
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III. THEORETICAL MODELS FOR EPW FILAMENTATION DRIVEN BY TRAPPED ELECTRONS

Here, in Sec. III A, we analyze a simple model for the filamentation instability based on an extension to 2D of

a modulational instability developed by Dewar.[8] In its simplest form, the growth rate scales with φ
1/2
L whereas

the Vlasov simulations show a faster scaling with φL. In Sec. III B, the KDS dispersion for the longitudinal TPI
is generalized to 2D. Representing the bulk plasma response by the fluid limit (consistent with the longitudinal
TPI model in Ref. ([9])), the solution of the GKDS dispersion relation involves finding the roots to an 8th order
polynominal with real coefficients. Unstable roots are found at much larger transverse wavenumbers and with much
larger growth rates than found in the Vlasov simulations. The growth rates of the GKDS model are brought into
better agreement with the simulations by considering the effect of Landau damping. For waves traveling in the same
direction as φL with phase velocities falling within the trapped region, Landau damping is strongly reduced. However,

as waves propagate at larger and larger angles to ~kL, they see a stronger gradient in the velocity distribution, that is,
the damping is anisotropic and dependent on φL. A model for that damping is developed in Sec. III C and applied
to the DRY and GKDS growth rates in Sec. III D.

A. Nonlinear Schroedinger Equation Model for EPW Filamentation

The filamentation of EPWs is predicted by a nonlinear Schroedinger equation proposed in Ref. [5, 7] which is an
extension to 2D of a 1D model that leads to a longitudinal modulational instability.[8] In its simplest formulation
that employs the fluid dispersion of EPWs, the model equation for the slow space and time variation of the envelope

φk(x, y, t) of the full field, φ(x, y, t) = 1/2(φk(x, y, t) exp (i~k · ~x− iωkt) + c.c.), is:

i

(
∂

∂t
+
∂ωk
∂kx

∂

∂x
+ ν

)
φk +

(
1

2

∂2ωk
∂k2

y

∂2

∂y2
+

1

2

∂2ωk
∂k2

x

∂2

∂x2
+ ∆ω

)
φk = 0 (1)

where the frequency shift ∆ω ∝
√
|φL| and ωk is obtained by solving the dispersion relation ε(~k, ω) = 0. As a first

approximation for the dielectric function ε(~k, ω), the fluid relation (including thermal corrections) is used,[10]

ε(~k, ω) = ε(k, ω) = 1−
ω2
pe

ω2 − 3k2v2
th,e

, (2)

where k = |~k|. Setting ky = 0 yields Dewar’s 1D model. The influence of including damping or using other coefficients
from a kinetic dispersion relation are discussed in Secs. III D and in the conclusions. Here, we restrict perturbations
to the transverse direction, neglect the damping ν, and, similar to Rose [5, 7], find a purely growing instability in the
wave frame. Evaluating the dispersion by Taylor expanding ωk about ωL, k = kL, we find, ∂2ωk/∂k

2
y = 3v2

th,e/ωL.
The complex root, Ω, is

Ω2 =
k2
y

4

∂2ωk
∂k2

y

(
∆ω + k2

y

∂2ωk
∂k2

y

)
. (3)

If the RHS of Eq. (3) is positive, as it is for all ky if ∆ω > 0, Ω is real. Otherwise, all ky <
[
|∆ω|/(∂2ωk/∂k

2
y)
]1/2

are
unstable. The maximum growth rate and the transverse wavenumber of the mode with the maximum growth are:

γDRYm =
|∆ω|

4
(4)

KDRY
m =

∣∣∣∣∣∣ ∆ω

2∂
2ωk
∂k2y

∣∣∣∣∣∣
1/2

(5)

Here, ∆ω, the frequency shift for a large-amplitude EPW,

∆ω

ωpe
= − αe√

2π(kLλDe)2

√
eφL
Te

(v2 − 1) exp(−v2

2
)

∣∣∣∣
v=vφ/vth,e

, (6)

where vφ = ωL/kL, has been found to be well represented by an adiabatic distribution of trapped electrons for which

αe = 0.544.[6, 12] Using Eq. (6) in Eqs. (4) and (5), we find γDRYm ∝ φ1/2
L and KDRY

m ∝ φ1/4
L . This DRY growth rate

will be compared with that predicted by the generalized KDS model (GKDS) and the simulations in the following
sections.
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B. Generalization of the Sideband KDS Model to Multiple Dimensions

The derivation of the Kruer, Dawson and Sudan (KDS) model [2, 9] for the sideband instability is generalized here to

multi-dimensions, i.e. for arbitrary orientation of wavevectors ~kS with respect to the wavevector kL of the LAW. The
KDS model provides a linear stability analysis of a large-amplitude, periodic EPW to small-amplitude electrostatic
fluctuations resulting from electron charge oscillations. The unperturbed system is thus non-homogeneous but periodic
along the direction of propagation of the initial LAW. The linear eigenmodes resulting from this stability analysis are
therefore Floquet (or Bloch) -type modes, which in general are each composed of a superposition of Fourier modes

with wavenumbers ~kS = n~kL + δ~kS , n = 0,±1,±2, . . .. The general theory for the stability analysis of LAW’s has
been derived by Goldman[13]. The KDS model, an approximate derivation of Goldman’s dispersion relation, assumes
that the LAW significantly affects only the trapped particles dynamics. In the KDS model it is thus the trapped
electrons which couple the Fourier modes in the Floquet-type eigenmodes and are the origin of their destabilization.
In Appendix A, the generalized KDS dispersion relation (A16) is derived and written here explicitly for the special
case of transverse sidebands, for which |kx| = kL and ky 6= 0, (filamentation-like), with the notation k2 = k2

L + k2
y and

~kL = kL~ex where ~ex,y are unit vectors in the x, y directions respectively.

ε(~k, ω) ε(~k − 2~kL, ω − 2ωL) =
ω2
t

k2

(
k2
L

Ω2 − ω2
B

+
k2
y

Ω2

)[
ε(~k, ω) + ε(~k − 2~kL, ω − 2ωL)

]
− 4ω4

t

Ω2(Ω2 − ω2
B)

k2
Lk

2
y

k4
. (7)

The right hand side of Eq. (7) clearly reflects the coupling of the Fourier modes by the trapped particles through
the trapped electron plasma frequency squared, ω2

t = Nte
2/(mε0) where Nt is spatially averaged density of trapped

particles. In the case of longitudinal sidebands, for which ky = 0, Eq. (7) recovers the dispersion relation in the
original KDS model restricted to longitudinal modes [Eq. (7) in reference [2]]. With use of Eq. 2, the dispersion
relation (7) can be reduced to a polynomial equation for ω with real coefficients, so that the eigenmode frequencies are
either real or appear in complex conjugate pairs. In the case of longitudinal sidebands, the corresponding dispersion
relation reduces to a polynomial equation of degree 6, while both the purely transverse and the general sideband case,
the former characterized by Eq. (7), reduce to a polynomial equation of degree 8.

1. Numerical Solution to the GKDS and DRY Dispersion Relations

Here, numerical solutions to the GKDS dispersion relation [Eq. (7)] for sidebands of EPWs are presented where Eq.

(2) is used for ε(~k, ω). We consider a LAW with wavenumber k̃L = kLλDe = 1/3, the same normalized wavelength
as in Refs. [14] and [4] where wavefront bowing and self-focusing of two-dimensional EPWs with finite transverse
width were studied. The numerical solution to the linear kinetic dispersion relation for an EPW with wavenumber

kλDe = 1/3, i.e. solving ε(~k, ω) = 0 with the kinetic dielectric function, yields the real frequency ωr/ωpe = 1.200 (as
well as damping rate γ/ωpe = 2.587 · 10−2) such that the phase velocity vφ/vth = 3.6. In contrast, the Bohm-Gross
estimate obtained with the fluid relation (2) for the dielectric function, yields ωr/ωpe = 1.155 and the phase velocity
vφ/vth = 3.465. In the GKDS model, both the normalized bounce frequency ωB/ωpe and density of trapped particles
Nt/Ne are functions of φL. The bounce frequency ωB/ωpe is taken as the frequency of deeply trapped particles

ωB,deep/ωpe = (eφL/Te)
1/2kLλDe. The number of trapped electrons is computed for an adiabatic distribution of

trapped electrons at a phase velocity of 3.6vth,e in agreement with the simulation results discussed in Sec. II for the
transverse instabilities and in Appendix A of Ref. ([9]) for longitudinal instabilities.

The most unstable roots for the GKDS dispersion have a double-humped structure as a function of ky which reflects
the fact that there are two different types of unstable modes: a pair of sidebands displaced symmetrically around the
frequency of the LAW and one with real frequency equal to that of the LAW ( i.e., a purely growing mode in the wave
frame). The root related to the second hump remains unstable up to the relatively large value kyλDe ' 0.58. Fig. 4
shows the growth rate for a two-dimensional scan over both the normalized wavenumber kyλDe and wave amplitude
eφL/Te for both the DRY model, Eq. (3) [Fig. 4b], and the GKDS model, Eq. (7) [Fig. 4a]. For Eq. (3) and (7), the
most unstable growth rate γmax has been identified at each amplitude φL, together with the corresponding transverse
wavenumber ky,max. Both γmax/ωpe and ky,maxλDe have been plotted as a function of eφL/Te for both dispersion
models in Fig. 4c and Fig. 4d respectively. As φL → 0, the unstable roots and the transverse wavenumber of the
unstable roots all vanish. For the DRY model, that behavior is obvious from Eqs. (4) and (6). In the dissipation-
free GKDS dispersion relation, the instability persists in the limit ωB < ωt for which φL < 1 × 10−3. In that limit,
straightforward analytic analysis shows that the growth rate and wavenumber of maximum growth are zero for φL = 0.
At this level of analysis, the simulation results are better represented by the DRY model than the GKDS model.
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FIG. 4: The growth rate γ is shown as a function of the transverse wavenumber kyλDe and amplitude eφL/Te. The fraction
of trapped particles Nt(φL)/Ne is estimated for an ’adiabatic’ distribution of trapped electrons and the bounce frequency
ωB(φL) = ωB,deep. (a) Solution to the KDS dispersion relation for transverse sidebands. Notice the two humps, corresponding
to two separate unstable branches. (b) Solution to the DRY dispersion relation. For each amplitude φL in (a) and (b), the
wavenumber ky,max has been identified at which the growth rate is maximum, leading to the curve plotted in white. (c) The
maximum growth rate and (d) the wavenumber at the maximum growth rate respectively for the KDS and the DRY models
in solid black and red lines respectively. The simulation results are shown by diamond markers.

C. Amplitude-Dependent Anisotropic Landau Damping

The two models, represented by Eqs. (3) and (7), take no account of the Landau damping rates. Here, we present
a model that takes account of the modification of the Landau damping for a distribution that has been flattened by
the LAW for all vy and vφ − vtr < vx < vφ + vtr where the trapped electron velocity vtr/vth,e = 2

√
eφL/Te.[15] The

LAW equilibrium distribution function in two velocity dimensions is represented in the separable form:

f0(~v) = Nef0,x(vx)f0,y(vy), (8)

f0,y(vy) = fM (vy), (9)

f0,x(vx) = fM (vx) + δfflatx (u), (10)

δfflatx (u) = P (u)
1√

2πvth,e

exp(−u
2

2
), (11)

P (u) = βu+ γ(u2 − 1), (12)

u = (vx − vφ,L) /δv, (13)

where fM (vx,y) = (1/(
√

2πvth,e)) exp (−v2
x,y/(2v

2
th,e)) is a one-dimensional Maxwell-Boltzmann. The parameter, δv,

represents the plateau width of the flattened region centered around vφ,L. Note,
∫
dvxδf

flat
x (u) = 0 so δfx has no

effect on the total number of particles. Imposing the condition that the 1st and 2nd derivatives of f0,x(vx) at the
phase velocity, vx = vφ,L, are zero determines the coefficients β and γ

β = (δṽ)v̄ exp (−v̄2/2)|v̄=vφ,L/vth,e , (14)

γ =
δṽ

3

(
1− v̄2

)
exp (−v̄2/2)|v̄=vφ,L/vth,e , (15)

where δṽ = δv/vth,e. In our calculations, δv = vtr. It can be shown that the dielectric function for the distribution in
Eq. (8) is

ε(~̃k, ω̃) = 1 +
1

k̃2

[
W (ω̃/k̃) + Ω(~̃k, ω̃)

]
, (16)

Ω(~̃k, ω̃) =
δv

vth,e

k̃xk̃
2

κ̃3

[
Q W (z′) +

(
γ
κ̃x
κ̃

+
β

z′

)]
, (17)
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FIG. 5: (a) color contour plot the Landau damping rate divided by the plasma frequency, νLD/ωpe, as a function of the wave
amplitude, eφL/Te and the transverse wavenumber, kyλDe;( b ) νLD/ωpe as a function of kyλDe for three values of eφL/Te

with

Q =

(
γ
κ̃x
κ̃
z′

2
+ βz′ − 3γ

κ̃x
κ̃
− β

z′

)
, (18)

where k̃ = (k̃2
x + k̃2

y)1/2, κ̃ = (κ̃2
x + k̃2

y)1/2, κ̃x = k̃xδṽ, and z′ = (ω̃ − k̃xvφ,L/vth,e)/κ̃. In Eq. (16), W (ξ) = 1 + ξZ(ξ)
is the plasma dispersion function for a Maxwell-Boltzmann velocity distribution.

Of particular interest to the transverse filamentation instability is the Landau damping of a mode with real frequency

ωR ' ωL and ~k = kL~ex+ky~ey for the flattened distribution. That is shown in Fig. 5. For ky = 0, the damping νL = 0
as it must be by design. As ky increases, the damping increases as well such that for large enough ky it becomes
the same as the Landau damping for an isotropic Maxwell-Boltzmann (MB) for a wave with the same phase velocity.
For larger wave amplitudes, larger ky is needed for the wave to be out of the plateau region of the distribution and
experience the full Landau damping of the MB distribution. Note, the damping rate for ky ∼ kL is much larger than

the damping of a wave with the same phase velocity, namely, .026ωpe as the LAW propagating at a large angle to ~kL

because its phase velocity is smaller, i.e., ωL/
√
k2
L + k2

y.

D. Growth Rates with Amplitude-Dependent Anisotropic Landau Damping subtracted

Comparison of the growth rates in Fig. 4 with the damping rates in Fig. 5 makes clear that the damping will
reduce or even stabilize the growth for kyλDe > 0.2. For the DRY model, keeping the damping term, ν in the analysis
is done easily with the result that γ → γ + ν such that the growth rate is simply reduced by ν. In general that is
not possible for the GKDS model because the coupled modes have different wavenumbers and frequencies. However,

for the special case considered here where only two sidebands ~k± = ±kL~ex + ky~ey are kept such that |~k+| = |~k−|,
the damping rates of the two sidebands are equal if the frequencies are equal. In Fig. 4a, the frequencies of the both
sidebands are the same for the branch with the larger ky. Thus, with damping the already-obtained growth rates
for the DRY and larger ky GKDS modes without damping simply are reduced by the damping rate. For the other
branch of GKDS modes with smaller ky, the sideband frequencies are slightly upshifted and downshifted from ωL
such that linearly they have different damping rates. We have approximated their damping rates by using ωL for
both sidebands, a small error if νu + νl � |νu − νl| where νu and νl are the damping rates of the upper and lower
sideband respectively.

In Fig. 6, the growth rates shown are simply the growth rates shown in Fig. 4 with the damping rates in Fig. 5
subtracted. Now, the growth rates from both theories are in reasonable agreement with the simulation data shown
in Fig. 3. The wavenumber of maximum growth is reduced, especially for the GKDS model, because of the strong
Landau damping of the large ky modes. The comparison of the GKDS and DRY models with the simulations is shown
in Fig. 7 for both kLλDe = 1/3 and kLλDe = 0.425. The data is bracketed by the models, DRY on the low and GKDS
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FIG. 6: The growth rates for the (a)GKDS and the (b) DRY models for kLλDe = 1/3 adjusted for the damping rates shown
in Fig. 5. (c) The maximum adjusted growth rates for each model and the simulation results as a function of eφL/Te. (d)
The wavenumber of the mode with maximum adjusted growth rates for each model and the simulation results as a function of
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FIG. 7: The maximum growth rate of the filamentation instability from the simulations and the DRY [dashed curves] and
GKDS [solid curves] models with damping included for kLλDe = 1/3 [black] and kLλDe = 0.425 [red]. The diamond markers
are the results from the simulations for kLλDe = 1/3 [black diamonds] and kLλDe = 0.425 [red diamonds]. A power law fit to
the simulation data is shown with dash-dot curves labeled with the equations that fit the data, again kLλDe = 1/3 [black] and
kLλDe = 0.425 [red].

on the high side, for both LAW wavenumbers. A power law fit to the simulation data shows a φ2/3 dependence for
kLλDe = 1/3 and a φ1/2 dependence for kLλDe = 0.425 except at the largest amplitudes.

IV. CONCLUSIONS

The Kruer-Dawson-Sudan (KDS) model [2], originally derived for analyzing the stability of large amplitude EPWs
to longitudinal sideband instabilities [so-called Trapped Particle Instabilities (TPI)], has been generalized to multiple
dimensions, leading to a new GKDS model that allows for the stability analysis of Fourier modes with transverse
wavevector components as well (leading to so-called filamentation instabilities). The solutions to the KDS model and



9

the DRY nonlinear Schroedinger model, both using the fluid dielectric for the bulk plasma response were compared
to simulation results for the flamentation instability obtained from the LOKI [11] code that solves the nonlinear
Vlasov-Poisson system for EPWs. In previous treatments, these models have not included Landau nor collisional
damping of the modulationally unstable longitudinal and transverse modes. For cases of practical interest, collisional
damping is unimportant although collisional detrapping might be. The unstable longitudinal sidebands (see Ref. [9] )
have phase velocities that fall in the region of velocity space flattened by the LAW. Thus, neglect of Landau damping
of these sideband modes is justified. As we showed in Sec. III C, modes propagating at oblique angles to the LAW
may be strongly damped at a rate dependent on their angle with respect to the LAW and on the LAW amplitude.
Thus, their stability must be considered in this light as done here for the first time.

In case of the stability analysis of an EPW with wavenumber kLλDe = 1/3, the comparison shows qualitative
agreement (i.e. scaling with respect to eφL/Te) for both the growth rate γmax of the most unstable transverse
sideband mode and associated transverse wavenumber ky,max as a function of the normalized wave amplitude in the
range 0.01 < φL < 1 provided one accounts for the Landau damping of obliquely propagating sidebands. We believe
that this is the first direct and successful comparison of 2D Vlasov simulations results to the predictions of reduced
theoretical models. The best agreement for the kLλDe = 1/3 case was achieved when solving the KDS or DRY model
using the ’adiabatic’ estimate for the fraction of trapped particles Nt/Ne (actually confirmed when directly diagnosing
the trapped electron fraction and nonlinear frequency shift in the simulation) and evaluating the bounce frequency as
ωB = ωB,deep. For the kLλDe = 0.425 case, the nonlinear frequency shift computed from the simulations follows the
same scaling as Eq. (6) but with the larger coefficient αe = 0.83 appropriate for the ’sudden’ approximation. Using
that larger coefficient for the kLλDe = 0.425 case leads to a 20% increase in the maximum DRY growth rate (over
that shown in Fig. 7 )and a 10% increase in the DRY wavenumber for the maximum growth (before accounting for
damping).

These theoretical models could be improved by a kinetic treatment of the distribution functions such that the
nonlinear modification of the EPW frequency and damping is naturally taken into account. For the DRY model,
kinetic modification of the dispersion, frequency shift, and damping are straightforward. Improving the GKDS model
is more daunting as the energy dependence of the bounce frequency and the wavenumber and frequency dependence
of the damping rates are nontrivial to include. However, the GKDS model already works very well for longitudinal
sidebands whereas the DRY model does not. Because the physically relevant case (currently under study) has both
instabilities at play with modes propagating at oblique angles, an improved GKDS model is clearly of interest.

It is interesting to compare quantitatively the growth rates obtained from the simulations for both the longitudinal
sideband instability[9] to the ones obtained here for the transverse filamentation instability. That is done in Fig. 8.
Note the filamentation and TPI sideband growth rates scale with the wave amplitude as φ2/3 for kLλDe = 1/3. In the
KDS theory, the maximum sideband growth rate scales as the 1/3 power of the wave amplitude if Nt ∝

√
φL. However,

at the larger wave amplitudes, φL > 0.1, Nt ∝ φL in the simulations. With this scaling, one finds γTPImax ∝ φ
1/2
L well

within the range of the simulation data.
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Appendix A: Derivation of the Eigenvalue Equation for the Generalized KDS model

Consider the dynamics of a macro-particle trapped in the n’th potential well of a periodic EPW with wavevector ~kL.
Let x be the direction of propagation of the EPW, and y the transverse direction. Introduce the corresponding unitary

vectors ~ex and ~ey, so that ~ex‖~kL and ~ey ⊥ ~kL. The position of such a particle is written ~xn(t) = ~xn0 + ~vφ,Lt+ ~ξn(t),
where ~vφ,L = ωL/kL ~ex is the phase velocity of the LAW, ~xn0 = xn0 ~ex + yn0 ~ey the unperturbed particle position

in the wave frame, and ~ξn(t) = ξx,n(t)~ex + ξy,n(t)~ey its deviation. Clearly xn0 = nλL, with n = 0,±1,±2, . . . and
λL = 2π/kL the wavelength of the EPW.
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FIG. 8: The maximum growth rates of the longitudinal sideband instability [obtained in Ref. ([9])] and the transverse filamenta-
tion instability are shown as a function of φL for (a) kLλDe = 1/3 and (b) kLλDe = 0.425. In both cases of kL, the longitudinal
sideband instability has a faster growth rate than the transverse filamentation instability. For equal wave amplitude, φL, the
growth rates are larger for larger kL because of the increased number of trapped electrons.

Newton’s equation of motion along x of a trapped macro-particle in the presence of sidebands is written:

d2

dt2
ξx,n(t) = −ω2

B ξx,n(t)− e

me
Ex[~xn(t), t], (A1)

where ωB/ωpe = (eφL/Te)
1/2kLλDe is the deeply-trapped-electron bounce frequency for an EPW with wave amplitude

φL. Here Ex is the electric field component along x. Consistent with the linearization procedure, Ex[~xn(t), t] '
Ex[~xn0 +~vφ,Lt, t]. Furthermore, the sideband field ~E(x, t) derives from an electrostatic potential φ(x, t), ~E = −∂φ/∂~x,
which can be represented in general as a superposition of Fourier modes:

φ(x, t) =

∫
d~kdω φ(~k, ω) exp[i(~k · ~x− ωt)].

The solution to Eq. (A1) can thus be written:

ξx,n(t) = − e

me

∫
d~kdω

ikxφ(~k, ω + kxvφ,L)

ω2 − ω2
B

exp[i(~k · ~xn0 − ωt)]. (A2)

Similarly, the equation of motion along the transverse direction y reads:

d2

dt2
ξy,n(t) = − e

me
Ey[~xn(t), t], (A3)

where Ey = −∂φ/∂y is the sideband electric field component along y. Note that the motion along y is unconstrained
by the LAW potential. The corresponding solution is given by

ξy,n(t) = − e

me

∫
d~kdω

ikyφ(~k, ω + kxvφ,L)

ω2
exp[i(~k · ~xn0 − ωt)]. (A4)

One can now derive the charge density ρn(~x, t) associated to a single macro-particle:

ρn(~x, t) = −e δ[~x− ~xn(t)] = −e δ
[
~x−

(
~xn0 + ~vφ,Lt+ ~ξn(t)

)]
,

where δ(~x) is the Dirac distribution. For small amplitude sideband fluctuations, a Taylor expansion is valid and leads
to

ρn(~x, t) ' −e δ [~x− (~xn0 + ~vφ,Lt)] + e ~ξn(t) · ∂
∂~x
δ [~x− (~xn0 + ~vφ,Lt)] . (A5)



11

The first term on the right hand side of Eq. (A5) is the unperturbed part of the charge density, a source component
to the electrostatic field of the LAW, while the second term is the fluctuating part ρ̃n(~x, t):

ρ̃n(~x, t) = e ~ξn(t) · ∂
∂~x
δ [~x− (~xn0 + ~vφ,Lt)] . (A6)

The fluctuation component of the total trapped electron charge density ρ̃t(~x, t) can then be written:

ρ̃t(~x, t) = NtλL

+∞∑
n=−∞

∫ +∞

−∞
dyn0 ρ̃n(~x, t), (A7)

integrating over all possible unperturbed transverse positions yn0 of the trapped particles and summed over all
potential wells of the LAW indexed by n. The Fourier transform of the fluctuating charge density is needed for the
eigenvalue equation for the sideband modes and is conveniently written in Fourier space. By using Eq. (A6), the
transform of ρ̃n(~x, t) is found:

ρ̃n(~k, ω) =
1

(2π)3

∫
d~xdt ρ̃n(~x, t) exp[−i(~k · ~x− ωt)]

=
e

(2π)3
i~k ·

∫
d~xdt ~ξn(t)

δ [~x− (~xn0 + ~vφ,Lt)] exp[−i(~k · ~x− ωt)]

=
e

(2π)3
exp(−i~k · ~xn0)

i~k ·
∫
dt ~ξn(t) exp[i(ω − kxvφ,L)t]

=
e

(2π)2
exp(−i~k · ~xn0) i~k · ~ξn(ω − kxvφ,L), (A8)

From Eqs. (A2) and (A4), one furthermore obtains:

ξx,n(ω) = − e

me

∫
d~k
ikxφ(~k, ω + kxvφ,L)

ω2 − ω2
B

exp(i~k · ~xn0), (A9)

ξy,n(ω) = − e

me

∫
d~k
ikyφ(~k, ω + kxvφ,L)

ω2
exp(i~k · ~xn0). (A10)

Combining Eqs. (A7), (A8), (A9), and (A10), the Fourier transform of the total fluctuating trapped particle charge
density becomes:

ρ̃t(~k, ω) = NtλL

+∞∑
n=−∞

∫ +∞

−∞
dyn0 ρ̃n(~k, ω)

=
NtλLe

(2π)2

+∞∑
n=−∞

∫ +∞

−∞
dyn0 i~k · ~ξn(ω − kxvφ,L) exp(−i~k · ~xn0)

=
λL

(2π)2

Nte
2

m

∫
d~k′

+∞∑
n=−∞

∫ +∞

−∞
dyn0 exp[i(~k′ − ~k) · ~xn0]×[

kxk
′
x

(ω − kxvφ,L)2 − ω2
B

+
kyk
′
y

(ω − kxvφ,L)2

]
φ(~k′, ω + (k′x − kx)vφ,L).

Making use of relations∫ +∞

−∞
dyn0 exp(ikyyn0) = 2πδ(ky),

+∞∑
n=−∞

exp(ikxxn0) =

+∞∑
n=−∞

exp(inkxλL) = kL

+∞∑
n=−∞

δ(kx − nkL),
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leads to

ρ̃t(~k, ω) =
Nte

2

m

+∞∑
n=−∞

∫
dk′xdk

′
yδ(k

′
y − ky)δ[k′x − (kx + nkL)]×[

kxk
′
x

(ω − kxvφ,L)2 − ω2
B

+
kyk
′
y

(ω − kxvφ,L)2

]
φ(~k′, ω + (k′x − kx)vφ,L)

=
Nte

2

m

+∞∑
n=−∞

[
kx(kx + nkL)

(ω − kxvφ,L)2 − ω2
B

+
k2
y

(ω − kxvφ,L)2

]
φ(kx + nkL, ky, ω + nωL). (A11)

The fluctuating trapped electron charge density ρ̃t appears as a source to Poisson’s equation for the electrostatic
potential associated to the sidebands, together with the corresponding bulk electron charge density response ρ̃b:

−4 φ(~x, t) =
1

ε0
(ρ̃b(~x, t) + ρ̃t(~x, t)) . (A12)

In the KDS model, the bulk response is assumed to respond as in a homogenous plasma, i.e. with no modifications

from the LAW and can thus be written in Fourier space as ρ̃b(~k, ω) = −k2ε0χ(~k, ω)φ(~k, ω), where χ is the electric
susceptibility of the homogenous plasma. Poisson’s equation (A12) in Fourier space thus becomes:

k2
[
1 + χ(~k, ω)

]
φ(~k, ω) = k2ε(~k, ω)φ(~k, ω) =

1

ε0
ρ̃t(~k, ω), (A13)

where ε = 1 + χ is the dielectric function of the homogenous plasma. Inserting Eq. (A11) into (A13) one finally
obtains the linear system of equations for the Fourier mode components of the electrostatic potential field associated
to the sidebands:

(k2
x + k2

y)ε(~k, ω)φ(~k, ω) =

ω2
t

+∞∑
n=−∞

[
kx(kx + nkL)

(ω − kxvφ,L)2 − ω2
B

+
k2
y

(ω − kxvφ,L)2

]
φ(kx + nkL, ky, ω + nωL). (A14)

As expected, the system of equations (A14) couples Fourier modes φ(~k + n~kL, ω + nωL), n = 0,±1,±2, . . . , so that
the corresponding eigenmodes are indeed of Floquet-type.

In reference [2], the analog of system (A14) coupling an infinite number of Fourier modes is reduced to the coupling
of just two modes with the argument that the dominant Fourier components are the ones with frequency of the order
of the electron plasma frequency ωpe. The left hand side of Eq. (A14) provides the eigenvalue equation for plane
EPWs with frequency ω ∼ ωpe, while the right hand side can be seen as a perturbation providing coupling between
these EPWs through the electrons trapped in the initial LAW (naturally also an EPW with frequency ωL ∼ ωpe).
Thus, all the dominant Fourier modes composing the Floquet-type solution of the sideband are assumed to have

frequency of order ωpe. If the frequency of a certain Fourier mode φ(~k, ω) is such that ω ∼ ωpe the only coupled mode

with similar frequency (in absolute value) is φ(~k − 2~kL, ω − 2ωL). Therefore, in a first approximation, the coupled
system is truncated to these two modes, which as a result reduces to the following rank 2 eigenvalue equation:

M ·
(

φ(kx, ky, ω)
φ(kx − 2kL, ky, ω − 2ωL)

)
= 0, (A15)

with

M =

(k2
x + k2

y)ε(0)− ω2
t

(
k2x

Ω2−ω2
B

+
k2y
Ω2

)
−ω2

t

(
kx(kx−2kL)

Ω2−ω2
B

+
k2y
Ω2

)
−ω2

t

(
kx(kx−2kL)

Ω2−ω2
B

+
k2y
Ω2

)
[(kx − 2kL)2 + k2

y]ε(−2)− ω2
t

(
(kx−2kL)2

Ω2−ω2
B

+
k2y
Ω2

)
 ,

with the notation ε(n) = ε(kx + nkL, ky, ω + nωL) as well as Ω = (ω + nωL)− (kx + nkL)vφ,L = ω − kxvφ,L.
Equation (A15) thus defines an eigenvalue equation for the sidebands to the LAW. An eigenmode is thus composed

of the two dominant Fourier modes φ(kx, ky, ω) and φ(kx − 2kL, ky, ω − 2ωL) where the wavevector-frequency pair
(kx, ky, ω) must satisfy the sideband dispersion relation,

det(M) = 0. (A16)
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For fixed ~k = (kx, ky), the determinant det(M) is in general an analytic function of the complex frequency ω. Solving
the dispersion relation (A16) thus reduces to finding the zeroes of this analytic function. The dispersion relation
(A16) can be written more explicitly as follows:

k2
0 k

2
−2 ε(0) ε(−2) =

ω2
t

[(
k2
x,−2

Ω2 − ω2
B

+
k2
y

Ω2

)
k2

0 ε(0) +

(
k2
x,0

Ω2 − ω2
B

+
k2
y

Ω2

)
k2
−2 ε(−2)

]
−

4ω4
t k

2
Lk

2
y

Ω2(Ω2 − ω2
B)
, (A17)

with the notation kx,n = kx + nkL and k2
n = k2

x,n + k2
y. The right hand side of Eq. (A17) reflects the coupling of the

Fourier modes by the trapped particles through the factor ω2
t .
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